The stringor bundle

Workshop "Geometric/Topological Quantum Field Theories and Cobordisms 2023"

Konrad Waldorf

Universität Greifswald

March 2023

Introduction

The string 2-group

The stringor representation

The stringor bundle

Features and applications

Summary

References

2005: In an unpublished note [ST05] Stephan Stolz and Peter Teichner make a proposal what the *stringor* bundle of a string manifold should be. It is supposed to play the role of the spinor bundle for fermionic strings.

The stringor bundle is a Hilbert space bundle \mathcal{F} over the free loop space LM of M, such that the fibre \mathcal{F}_{γ} over a loop of the form $\gamma = \beta_1 \cup \beta_2$ is a bimodule

$$\mathcal{A}_{\beta_1} \circlearrowleft \mathcal{F}_{\gamma} \circlearrowleft \mathcal{A}_{\beta_2}$$

for von Neumann algebras \mathcal{A}_{β} associated to paths β .

Moreover, there is a Connes fusion product

$$\mathcal{F}_{\beta_1 \cup \beta_2} \boxtimes_{\mathcal{A}_{\beta_2}} \mathcal{F}_{\beta_2 \cup \beta_3} \cong \mathcal{F}_{\beta_1 \cup \beta_3}.$$

2020: Kristel-KW [KWb, KWc, KWa]: constructed this fusion product rigorously.

Goal of this talk: give a neat & complete construction of the stringor bundle and the setting it lives in, fully analogous to the spinor bundle.

Joint work with Peter Kristel and Matthias Ludewig: [KLWa, KLWb, KLWc]

The string 2-group

The stringor representation

The stringor bundle

Features and applications

2005: Baez, Crans, Schreiber, and Stevenson (BCSS) constructed the string 2-group as a crossed module of Fréchet Lie groups [BCSS07]. $G = \operatorname{Spin}(d)$ $\widetilde{\Omega G}$ basic central extension

Indeed:
$$\beta \cdot \Phi := \widetilde{\beta \cup \beta} \cdot \Phi \cdot \widetilde{\beta \cup \beta}^{-1}$$

Only one issue: Peiffer identity – satisfied because $\widetilde{\Omega G}$ is disjoint-commutative. Our modification of the BCSS string 2-group gives a simple and canonical model as a strict Fréchet Lie 2-group.

It is a central 2-group extension:

$$1 \longrightarrow B\mathrm{U}(1) \longrightarrow \mathrm{String}(d) \longrightarrow \mathrm{Spin}(d)_{dis} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathrm{U}(1) \longrightarrow \Omega_{(0,\pi)}\mathrm{Spin}(d) \longrightarrow \mathrm{Spin}(d)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow P_e\mathrm{Spin}(d)^{flat} \xrightarrow{\mathrm{ev}_1} \mathrm{Spin}(d)$$

It is classified by its k-invariant (Baez-Lauda [BL04]/Schommer-Pries [SP11]):

The string 2-group

The stringor representation

The stringor bundle

Features and applications

Finding a useful representation of the string 2-group was an open problem since the invention of the BCSS model in 2005. One important handle is the choice of a model for 2-vector spaces:

- ightharpoonup Module categories over Vect_k (Kapranov-Voevodsky)
- ightharpoonup Categories internal to Vect_k (Baez-Crans)
- ► Finite abelian linear categories (TQFT context)
- ▶ 2-vector spaces := algebras, bimodules, intertwiners (Schreiber)

isomorphism	Morita equivalence
general linear group	$\operatorname{Bimod}(A)^{\times}$ \rangle \text{if } A \text{ is Picard-surjective [KLWb]}
	$(A^{\times} \stackrel{c}{\to} \operatorname{Aut}(A) \circlearrowleft A^{\times}) := \operatorname{AUT}(A)$
representation	2-group homomorphism $R:\Gamma o \operatorname{AUT}(A)$
inner product space	C*-algebra
unitary group	$(\mathrm{U}(A) \stackrel{c}{\to} \mathrm{Aut}^*(A) \circlearrowleft \mathrm{U}(A)) := \mathrm{AUT}^*(A)$

von Neumann algebra

vector spaces

Hilbert space

unitary representation

2-vector spaces (= algebras, ...)

2-group morphism $R: \Gamma \to AUT^*(A)$

Goal: construct a unitary representation

$$\operatorname{String}(d) \xrightarrow{R} \operatorname{AUT}^*(A)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega_{(0,\pi)} \operatorname{Spin}(d) \longrightarrow \operatorname{U}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$P_e \operatorname{Spin}(d)^{flat} \longrightarrow \operatorname{Aut}^*(A)$$

Construction of the bottom layer:

- ▶ Real Hilbert space $V := L^2(S^1, \mathbb{S} \otimes \mathbb{C}^d) \supseteq V_{(0,\pi)}$
- ▶ Clifford C*-algebra $\mathbb{C}l(V) \supseteq \mathbb{C}l(V_{(0,\pi)}) =: A$
- ► Action: $\Omega O(d) \xrightarrow{pointwise} O(V) \xrightarrow{Bogoliubov} \operatorname{Aut}^*(\mathbb{Cl}(V))$

$$P_e \operatorname{Spin}(d)^{flat} \longrightarrow P_e \operatorname{O}(d)^{flat} \longrightarrow \operatorname{O}(V_{(0,\pi)}) \longrightarrow \operatorname{Aut}^*(A)$$

Some classical representation theory (Araki [Ara87], Pressley-Segal [PS86], Plymen-Robinson [PR94],...)

▶ APS-Lagrangian of positive modes of the Dirac operator,

$$L\subseteq V=L^2(S^1,\mathbb{S}\otimes\mathbb{C}^d).$$

▶ Fock space \mathcal{F}_L with representation $\mathbb{C}l(V) \hookrightarrow \mathrm{B}(\mathcal{F}_L)$.

Unfortunately, the dashed factorization does not exist, *A* is too small!

Solution: we complete to a von Neumann algebra:

$$N := A'' \subseteq \mathbb{C}l(V)'' = B(\mathcal{F}).$$

Theorem (Kristel-Ludewig-KW 2022 [KLWb])

1. The desired factorization exists, and we get a commutative diagram

$$\Omega_{(0,\pi)}\widetilde{\mathrm{Spin}}(d) \longrightarrow \mathrm{U}(N)$$

$$\downarrow \qquad \qquad \downarrow$$
 $P_e\mathrm{Spin}(d)^{flat} \longrightarrow \mathrm{Aut}^*(N)$

2. The diagram is a 2-group homomorphism and thus a unitary representation

$$String(d) \rightarrow AUT^*(N)$$
.

3. This representation is continuous when $\operatorname{Aut}^*(N)$ is equipped with Haagerup's u-topology.

The string 2-group

The stringor representation

The stringor bundle

Features and applications

- 2-vector space = algebra
- 2-vector bundle = algebra bundle ?
 - ▶ classified by $\mathrm{H}^0(M,\mathbb{Z}_2) imes \mathrm{Tor}(\mathrm{H}^3(M,\mathbb{Z}))$
 - do not glue along bimodule bundles!

Better definition:

Some facts [KLWa]:

- ▶ algebra bundles as well as bundle gerbes are 2-vector bundles
- ▶ 2-vector bundles form a 2-stack
- ▶ 2-line bundles classified by $H^0(M, \mathbb{Z}_2) \times H^3(M, \mathbb{Z})$
- ▶ there is a von Neumann version [KLWc]: $\otimes_{\mathcal{A}} \leadsto \boxtimes$

Speculation:

classified by a version of elliptic cohomology

Suppose N is a von Neumann algebra and we have a principal $\mathrm{AUT}^*(N)$ -2-bundle over M:

If \mathcal{P} is a principal 2-bundle for a general crossed module Γ , and $R:\Gamma\to \mathrm{AUT}^*(N)$ is a continuous representation, then we push along R and form the associated 2-Hilbert space bundle for $R_*(\mathcal{P})$.

1 2

String 2-group Representation on the 2-vector space N = A''

2-vector bundle associated to a string structure $S(M) \times \mathbb{R} \times \mathbb{R}$

 $\mathcal{S}(M) \times_{\mathrm{String}(d)} N$

Щ

Stringor bundle

The string 2-group

The stringor representation

The stringor bundle

Features and applications

(A) Transgression to loop space:

higher structure over $M \leadsto \text{ordinary structure over } LM$ compatible with loop fusion and thin homotopies

bundle gerbe over $M \longrightarrow \text{line bundle over } LM \text{ with } fusion product and thin homotopy equivariant structure [Wal16, Wal12]}$

(B) Fermionic string theory as a smooth functorial field theory:

Proposal: the stringor bundle is its value "on the point".

- ⇒ its transgression, i.e., Stolz-Teichner's loop space bundle, becomes the value "on the circle".
- \Rightarrow the Connes fusion product is what the theory assigns to a pair of pants.

Conjecture: the value on the torus is the fermionic action functional (under Bunke's anomaly cancellation mechanism [Bun11] using the given string structure).

- (C) There is a notion of a twisted 2-vector bundle, and a construction of a twisted stringor bundle for non-string manifolds, analogous to Mathai-Melrose's work on twisted spinor bundles and fractional indices.
- (D) In ongoing work we try to use a string connection in order to define a covariant derivative on the stringor bundle.

The main open questions one could then attack are:

- ► Can one define a "Dirac" operator on sections of the stringor bundle?
- ▶ What is the index of this operator, and does it compute the Witten genus?
- ▶ What can it say about the existence of metrics with positive Ricci curvature on *M* ?

Summary: the stringor bundle

- ▶ it is a von Neumann 2-vector bundle over a string manifold
- it can be defined as an associated bundle,

$$\mathcal{S}(M) \times_{\operatorname{String}(d)} N$$
,

using a representation of the string 2-group

it is the value of a smooth functorial field theory on the point, modelling fermionic strings

Thank you!

References

- [Ara87] Huzihiro Araki, "Bogoliubov automorphisms and Fock representations of canonical anticommutation relations". Contemp. Math., 62:23–141, 1987.
- [BCSS07] John C. Baez, Alissa S. Crans, Danny Stevenson, and Urs Schreiber, "From loop groups to 2-groups". Homology, Homotopy Appl., 9(2):101–135, 2007. [arxiv:math.QA/0504123].
- [BL04] John C. Baez and Aaron D. Lauda, "Higher-dimensional algebra V: 2-groups". Theory Appl. Categ., 12:423–491, 2004.
 [arxiv:math/0307200].
- [Bun11] Ulrich Bunke, "String Structures and Trivialisations of a Pfaffian Line Bundle". Commun. Math. Phys., 307(3):675–712, 2011. [arxiv:0909.0846].
- [KLWa] Peter Kristel, Matthias Ludewig, and Konrad Waldorf, "2-vector bundles". Preprint. [arxiv:2106.12198].

	insidious bicategory of algebra bundles". Preprint. [arxiv:2204.03900].
[KLWc]	Peter Kristel, Matthias Ludewig, and Konrad Waldorf, "A representation of the string 2-group". Preprint.

[arxiv:2206.09797].

Peter Kristel, Matthias Ludewig, and Konrad Waldorf, "The

[KLWb]

[KWc]

[KWa] Peter Kristel and Konrad Waldorf, "Connes fusion of spinors on loop space". Preprint. [arxiv:2012.08142].

[KWb] Peter Kristel and Konrad Waldorf, "Fusion of implementers for spinors on the circle". Adv. Math., to appear. [arxiv:1905.00222].

spinor bundles on loop space". *J. Differential Geom.*, to appear.

[arxiv:2009.00333].

Peter Kristel and Konrad Waldorf, "Smooth Fock bundles, and

 $\hbox{[LW]} \qquad \hbox{Matthias Ludewig and Konrad Waldorf, "Loop group extensions and Lie 2-groups". In preparation. }$

[PR94] Roger Plymen and Paul Robinson, *Spinors in Hilbert space*. Cambridge Univ. Press, 1994.

- [PS86] A. Pressley and Graeme Segal, Loop groups. Oxford Univ. Press, 1986.
 [SP11] Chris Schommer-Pries, "Central extensions of smooth 2-groups and
 - a finite-dimensional string 2-group". Geom. Topol., 15:609–676, 2011. [arxiv:0911.2483].
- [ST05] Stephan Stolz and Peter Teichner, "The spinor bundle on loop spaces". Unpublished, 2005.
- [Wal12] Konrad Waldorf, "Transgression to loop spaces and its inverse, III: Gerbes and thin fusion bundles". Adv. Math., 231:3445–3472, 2012. [arxiv:1109.0480].
- [Wal16] Konrad Waldorf, "Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with connection". *Asian J. Math.*, 20(1):59–116, 2016. [arxiv:1004.0031].