Loop Group Geometry and Transgression

Konrad Waldorf Universität Greifswald

47th Seminar Sophus Lie¹

May 2014

 $^{^{1}\}mathrm{The}$ talk was invited and prepared, but unfortunately could not take place (the speaker was unavailable)

1.) Gerbes and transgression

2.) Loop group extensions via transgression

3.) Spin structures on loop spaces

Gerbe with connection \mathcal{G} over a smooth manifold M

- ightharpoonup cover of M by open sets U_{α}
- 2-forms $B_{\alpha} \in \Omega^2(U_{\alpha})$
- ▶ hermitian line bundles $L_{\alpha\beta}$ over $U_{\alpha} \cap U_{\beta}$ with connection of curvature

$$\operatorname{curv}(L_{\alpha\beta}) = B_{\beta} - B_{\alpha}$$

(
$$\rightsquigarrow$$
 curvature $H \in \Omega^3(M)$ of \mathcal{G} defined by $H|_{U_\alpha} = dB_\alpha$)

connection-preserving isomorphisms

$$\mu_{\alpha\beta\gamma}: \mathsf{L}_{\alpha\beta}\otimes \mathsf{L}_{\beta\gamma} \longrightarrow \mathsf{L}_{\alpha\gamma}$$

subject to an associativity condition

Define **hermitian line bundle** $L\mathcal{G}$ over loop space $LM = C^{\infty}(S^1, M)$

For each loop $\gamma: S^1 \longrightarrow M$, choose $0 = t_0 \le ... \le t_n = 1$ and indices $\alpha_1, ..., \alpha_n$ such that

$$\gamma([t_{i-1},t_i])\subseteq U_{\alpha_i}$$

▶ Define the fibre of $L\mathcal{G}$ over γ as

$$L_{\alpha_1\alpha_2|_{\gamma(t_1)}}\otimes ...\otimes L_{\alpha_{n-1}\alpha_n|_{\gamma(t_{n-1})}}\otimes L_{\alpha_n\alpha_1|_{\gamma(t_n)}}$$

Isomorphisms $\mu_{\alpha\beta\gamma} \leadsto \text{independence of } n \text{ and of indices } \alpha_i$ Connection on $L_{\alpha\beta} \leadsto \text{independence of } t_i \in \gamma^{-1}(U_{\alpha_i} \cap U_{\alpha_{i+1}})$

Define **connection** $\nu_{\mathcal{G}}$ on $L\mathcal{G}$

► Consider path $\phi : \gamma \longrightarrow \gamma'$ in LM ϕ "short" \leadsto can assume $t_0, ..., t_n$ and $\alpha_1, ..., \alpha_n$ with

$$\phi([0,1]\times[t_{i-1},t_i])\subseteq U_{\alpha_i}$$

▶ Define parallel transport in $L\mathcal{G}$ by parallel transport in $L_{\alpha_i\alpha_{i+1}}$ along paths $\phi_{t_i}: \gamma(t_i) \longrightarrow \gamma'(t_i)$ in M, with correction by integrals

$$\int_{[0,1]\times[t_{i-1},t_i]}\phi^*B_{\alpha_i}$$

▶ Identity $\operatorname{curv}(L_{\alpha_i\alpha_{i+1}}) = B_{\alpha_{i+1}} - B_{\alpha_i}$ implies well-definedness

Standard facts (Gawędzki, Brylinski, Murray, Carey, ...):

▶ Transgression $\mathcal{G} \mapsto \mathcal{LG}$ is a functor

$$\mathcal{G}rb^{\nabla}(M) \longrightarrow \mathcal{B}un^{\nabla}(LM),$$

$$\operatorname{curv}(\nu_{\mathcal{G}}) = \int_{S^1} ev^* H, \text{ for } ev : S^1 \times LM \longrightarrow M$$

- LG has a canonical fusion product
- Connection $\nu_{\mathcal{G}}$ is superficial

Fusion product on LG:

Definition: a fusion product on a line bundle P over LM is an associative rule

$$P_{\gamma_1 \cup \gamma_2} \otimes P_{\gamma_2 \cup \gamma_3} \longrightarrow P_{\gamma_1 \cup \gamma_3}$$

where $\gamma_i \cup \gamma_j \in LM$ is obtained by concatenation of γ_i with the inverse of γ_i .

- ► Technically, a fusion product is a bundle isomorphism over the 3-fold fibre product of $PM \longrightarrow M \times M$.
- ▶ For $P = L\mathcal{G}$ the fusion product exists since a point $\gamma_2(t_i)$ on the middle path appears twice, and the contributions cancel:

$$L_{\alpha_i\alpha_{i+1}|_{\gamma_2(t_i)}}\otimes L_{\alpha_{i+1}\alpha_i|_{\gamma_2(t_i)}}\overset{\mu}{\cong}L\alpha_i\alpha_i|_{\gamma_2(t_i)}\overset{\mu}{\cong}\mathbb{C}$$

Superficiality of the connection $\nu_{\mathcal{G}}$ on $L\mathcal{G}$:

- ▶ Consider connection ν on a line bundle P over LM. It is called **superficial** if:
 - 1.) thin loops $\tau \in LLM$ have trivial holonomy: $\operatorname{Hol}_{\nu}(\tau) = 1$ (thin: $\tau : S^1 \times S^1 \longrightarrow M$ has nowhere full rank)
 - 2.) thin homotopic loops $\tau, \tau \in LLM$ have the same holonomy: $\operatorname{Hol}_{\nu}(\tau) = \operatorname{Hol}_{\nu}(\tau')$
- ▶ In order to see that $\nu_{\mathcal{G}}$ on $L\mathcal{G}$ is superficial, one expresses the holonomy of $\nu_{\mathcal{G}}$ as the surface holonomy of the gerbe,

$$\operatorname{Hol}_{\nu_{\mathcal{G}}}(\tau) = \operatorname{Hol}_{\mathcal{G}}(\tau)$$

and proves that surface holonomy has properties 1.) and 2.).

Summary:

- ▶ From every gerbe \mathcal{G} over M one can construct a hermitian line bundle $L\mathcal{G}$ over LM with a fusion product $\lambda_{\mathcal{G}}$ and a superficial connection $\nu_{\mathcal{G}}$.
- ▶ Theorem [KW '10]: This gives an equivalence of categories

$$\operatorname{\mathcal{G}\mathit{rb}}^{\nabla}(M) \cong \operatorname{\mathcal{F}\mathit{usBun}}^{\nabla_{\!\!\mathit{sf}}}(LM).$$

Wait – don't we have to require that the bundles on the right hand side are equivariant under loop rotation?

Fact: equivariance is a consequence of the superficial connection

▶ Rotation of a loop $\gamma \in LM$ by an angle $\beta \in [0, 2\pi]$ can be regarded as a path in LM,

$$\phi_{\beta}: \gamma \longrightarrow r_{\beta}(\gamma)$$

- ▶ Get lift $\widetilde{\phi_{\beta}}: L\mathcal{G}_{\gamma} \longrightarrow L\mathcal{G}_{r_{\beta}(\gamma)}$ by parallel transport of $\nu_{\mathcal{G}}$
- ▶ In order to make this an action of S^1 , we have to assure

$$\widetilde{\phi_{2\pi}} = \widetilde{\phi_0} = \mathrm{id}.$$

Proof: $\phi_{2\pi}$ is a loop in LM and it is thin.

This argument generalizes to equivariance under $\mathcal{D}iff^+(S^1)$ and under $\mathcal{R}ep^+(S^1)$.

1.) Gerbes and transgression

2.) Loop group extensions via transgression

3.) Spin structures on loop spaces

The basic gerbe \mathcal{G}_{bas} over a compact simple simply-connected Lie group G:

- Uniquely characterized by
 - 1.) $DD(\mathcal{G}_{has})$ generates $H^3(\mathcal{G}, \mathbb{Z}) \cong \mathbb{Z}$
 - 2.) Curvature H left-invariantly determined by $\langle X, [Y, Z] \rangle$
- ► Concrete Lie-theoretical construction (Meinrenken '02, Gawedzki-Reis '02)
 - U_{α} conjugation-invariant, $\alpha=0,....,\mathrm{rk}(\mathfrak{g})$
 - $U_{\alpha} \cap U_{\beta} \cong \mathcal{O}_{\lambda_{\alpha} \lambda_{\beta}} \subseteq \mathfrak{g}^*$ is a coadjoint orbit, for λ_{α} vertices of Weyl alcove
 - $L_{\alpha\beta}$ is the prequantum line bundle with Kostant connection

Basic gerbe \mathcal{G}_{bas} is multiplicative:

► Isomorphism

$$\mathcal{M}: \operatorname{pr}_1^*\mathcal{G}_{\textit{bas}} \otimes \operatorname{pr}_2^*\mathcal{G}_{\textit{bas}} \longrightarrow m^*\mathcal{G}_{\textit{bas}}$$

over $G \times G$, with m the product of G.

- ▶ Associativity condition over $G \times G \times G$
- ▶ Multiplicative structure determines a preimage of DD(G) under the homomorphism

$$\mathrm{H}^4(BG,\mathbb{Z}) \longrightarrow \mathrm{H}^3(G,\mathbb{Z})$$

Apply transgression (first step)

- ▶ Obtain Fréchet principal S^1 -bundle $L\mathcal{G}_{bas}$ over LG
- ▶ Obtain smooth bundle isomorphism

$$L\mathcal{M}: \operatorname{pr}_1^* L\mathcal{G}_{bas} \otimes \operatorname{pr}_2^* L\mathcal{G}_{bas} \longrightarrow Lm^* L\mathcal{G}_{bas}$$

over $LG \times LG$, associative over $LG \times LG \times LG$ Equivalently: a Fréchet Lie group structure on $L\mathcal{G}_{bas}$ making

$$1 \longrightarrow S^1 \longrightarrow LG_{bas} \longrightarrow LG \longrightarrow 1$$

a central extension

▶ $c_1(\mathcal{LG}_{bas})$ is the transgression of a generator of $\mathrm{H}^3(G,\mathbb{Z})$ \leadsto this is the universal central extension of $\mathcal{L}G$

Apply transgression (second step)

▶ Obtain connection $\nu_{\mathcal{G}_{bas}}$ on $L\mathcal{G}_{bas}$

$$\leadsto$$
 induces splitting s of Lie algebra extension

 \leadsto induces classifying 2-cocycle $\omega: L\mathfrak{g} \times L\mathfrak{g} \longrightarrow \mathbb{R}$, namely

$$\omega(X,Y) = \int_{S^1} \langle X, Y' \rangle$$

 $\triangleright \nu_{\mathcal{G}_{bas}}$ is superficial

$$ightharpoonup$$
 canonical equivariance under \mathcal{D} iff $^+(S^1)$ and \mathcal{R} ep $^+(S^1)$

lacktriangle Remark: $u_{\mathcal{G}_{has}}$ is *not* the standard Pressley-Segal connection

$$u_{\mathsf{st}} := \theta^{\mathsf{L}\mathcal{G}_{\mathsf{bas}}} - \mathsf{s}(p^*\theta^{\mathsf{L}\mathsf{G}})$$

of left-invariant curvature ω . Instead, $\nu_{\mathcal{G}_{bas}}=\nu_{st}+\beta$ for a 1-form $\beta\in\Omega^1(LG)$, and

$$\int_{S^1} \operatorname{ev}^* H = \operatorname{curv}(\nu_{\mathcal{G}_{bas}}) = \omega + d\beta.$$

Apply transgression (third step)

- ▶ Obtain fusion product $\lambda_{\mathcal{G}_{bas}}$ on $L\mathcal{G}_{bas}$
- ► Transgression is a functor:
 - → fusion product is a group homomorphism
- ▶ Fusion product can be seen explicitly in the Mickelsson model

$$\widetilde{LG} = \{(\eta, z) \mid z \in \mathbb{C} \text{ and } \eta : D^2 \longrightarrow G\}/\sim$$

with $(\eta_1, z_1) \sim (\eta_2, z_2)$ if $\eta_1|_{S^1} = \eta_2|_{S^1}$, $z_2 = z_1 e^{2\pi i WZ(\eta_1 \cup \eta_2)}$, where WZ stands for the Wess-Zumino term.

Namely, for maps $\eta_{ij}:D^2\longrightarrow \mathcal{G}$ with $\eta_{ij}|_{S^1}=\gamma_i\cup\gamma_j$ one has

$$\lambda_{\mathcal{G}}((\eta_{12}, z_{12}) \otimes (\eta_{23}, z_{23})) = (\eta_{13}, z_{12}z_{23}e^{2\pi iWZ(\eta_{12}\cup \eta_{23}\cup \eta_{13})}).$$

Summary: Multiplicative gerbes with connection over G provide models for central extensions of LG with nice properties:

- canonical connections
- canonical equivariant structures
- canonical fusion product

1.) Gerbes and transgression

2.) Loop group extensions via transgression

3.) Spin structures on loop spaces

Motivation from physics:

Supersymmetric field theories suffer from a "global anomaly"

► 1-dimensions: anomaly represented by 2nd Stiefel-Whitney class

$$w_2 \in \mathrm{H}^2(M,\mathbb{Z}_2)$$

Cancellation: spin structure on M

▶ 2-dimensions: anomaly represented by

$$\frac{1}{2}p_1(M)\in \mathrm{H}^4(M,\mathbb{Z})$$

Cancellation: two approaches:

- 1.) Killingback '87: spin structure on LM
- 2.) Stolz-Teichner '04: string structure on M

Spin structures on loop spaces (Killingback '87):

- ▶ Definition: a **spin structure** on *LM* is a lift of the structure group of *LFM* to the universal central extension

$$1 \longrightarrow S^1 \longrightarrow L\widetilde{\mathrm{Spin}(n)} \longrightarrow L\mathrm{Spin}(n) \longrightarrow 1$$

i.e. a principal $L\mathrm{Spin}(n)$ -bundle \widetilde{LFM} over LM with an equivariant map $\sigma: \widetilde{LFM} \longrightarrow LFM$.

Obstruction against spin structures on loop spaces:

Spin structures exists if and only if a certain class

$$\lambda_{LM} \in \mathrm{H}^3(LM,\mathbb{Z})$$

vanishes.

► Theorem [McLaughlin '92]:

$$\lambda_{LM} = \int_{S^1} \operatorname{ev}^* \left(\frac{1}{2} p_1(M) \right)$$

▶ Thus, we have

$$\frac{1}{2}p_1(M) = 0 \implies \lambda_{LM} = 0$$

but the converse is not true in general (Pilch-Warner '88)

→ we need enhanced notion of spin structures on loop spaces

General lifting theory provides a **reformulation** in terms of principal S^1 -bundles and bundle isomorphisms:

► The equivariant map

$$\sigma: \widetilde{\mathit{LFM}} \longrightarrow \mathit{LFM}$$

exhibits \widetilde{LFM} as a principal S^1 -bundle S over LFM.

▶ The LSpin(n)-action on S can be encoded as an isomorphism

$$\kappa: S \otimes \widetilde{LSpin(n)} \longrightarrow \rho^* S,$$

of S^1 -bundles over $LFM \times L\mathrm{Spin}(n)$, with ρ the principal action of $L\mathrm{Spin}(n)$ on LFM.

Enhanced version of a spin structure:

▶ Definition: A **fusion spin structure** on LM is a spin structure (S, κ) with a fusion product λ on the S^1 -bundle S over LFM such that

$$\kappa: S \otimes \widetilde{LSpin(n)} \longrightarrow \rho^*S$$

is fusion-preserving w.r.t. the fusion product $\lambda_{\mathcal{G}_{bas}}$ on $\widetilde{L\mathrm{Spin}(n)} = L\mathcal{G}_{bas}$.

▶ Theorem [KW '12]: Fusion spin structures exist if and only if

$$\frac{1}{2}p_1(M)=0$$

Summary:

- The fusion product on the universal central extension $L\widetilde{\mathrm{Spin}}(n)$ allows to define fusion spin structures on loop spaces
- ► The existence of a fusion spin structure on *LM* is precisely the condition for the cancellation of the global anomaly of supersymmetric 2-dimensional field theories on *M*.

Further topics:

- ► Equivalence between fusion spin structures on LM and string structures on M
 - Kottke-Melrose '13: adding reparameterization invariance KW '14: adding thin structures
- ➤ Spin connections *LM* (Coquereaux-Pilch '98) KW'14: imposing a superficiality condition makes them equivalent to *string connections* on *M*
- ► Anomaly cancellation mechanism: String connections *M* trivialize a Pfaffian bundle of a family of Dirac operators (Bunke '11)

U. Bunke, "String Structures and Trivialisations of a Pfaffian Line Bundle".

Commun. Math. Phys., 307(3):675-712, 2011.

[arxiv:0909.0846]

A. L. Carey, J. Mickelsson, and M. K. Murray, "Bundle Gerbes Applied to Quantum Field Theory". Rev. Math. Phys., 12:65–90, 2000.

[arxiv:hep-th/9711133]

R. Coquereaux and K. Pilch, "String structures on loop bundles".

Commun. Math. Phys., 120:353-378, 1998.

K. Gawędzki, "Topological actions in two-dimensional quantum field theories".

In G. 't Hooft, A. Jaffe, G. Mack, K. Mitter, and R. Stora, editors, *Non-perturbative quantum field theory*, pages 101–142. Plenum Press, 1988.

K. Gawędzki and N. Reis, "Basic gerbe over non simply connected compact groups".

J. Geom. Phys., 50(1-4):28-55, 2003.

[arxiv:math.dg/0307010]

T. Killingback, "World sheet anomalies and loop geometry".

Nuclear Phys. B, 288:578, 1987.

C. Kottke and R. Melrose, "Equivalence of string and fusion loop-spin structures". Preprint.

[arxiv:1309.0210]

D. A. McLaughlin, "Orientation and string structures on loop space". Pacific J. Math., 155(1):143–156, 1992.

E. Meinrenken, "The basic gerbe over a compact simple Lie group".

Enseign. Math., II. Sér., 49(3-4):307-333, 2002.

M. K. Murray. "Bundle gerbes".

J. Lond. Math. Soc., 54:403-416, 1996.

[arxiv:dg-ga/9407015]

[arxiv:math/0209194]

K. Pilch and N. P. Warner, "String structures and the index of the Dirac-Ramond operator on orbifolds". Commun. Math. Phys., 115:191-212, 1988.

S. Stolz and P. Teichner, "What is an elliptic object?"

In Topology, geometry and quantum field theory, volume 308 of London Math. Soc. Lecture Note Ser., pages 247-343. Cambridge Univ. Press, 2004.

K. Waldorf, "Spin structures on loop spaces that characterize string manifolds". Preprint.

[arxiv:1209.1731]

K. Waldorf, "String geometry vs. spin geometry on loop spaces". Preprint.

[arxiv:1403.5656]

K. Waldorf, "Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with connection". Preprint.

[arxiv:1004.0031]