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The talk was invited and prepared, but unfortunately could not take place (the speaker was unavailable)



1.) Gerbes and transgression

2.) Loop group extensions via transgression

3.) Spin structures on loop spaces



Gerbe with connection G over a smooth manifold M

I cover of M by open sets Uα

I 2-forms Bα ∈ Ω2(Uα)

I hermitian line bundles Lαβ over Uα ∩ Uβ

with connection of curvature

curv(Lαβ) = Bβ − Bα

( curvature H ∈ Ω3(M) of G defined by H|Uα = dBα)

I connection-preserving isomorphisms

μαβγ : Lαβ ⊗ Lβγ
// Lαγ

subject to an associativity condition



Define hermitian line bundle LG over loop space LM = C∞(S1, M)

I For each loop γ : S1 // M, choose

0 = t0 ≤ ... ≤ tn = 1 and indices

α1, ..., αn such that

γ([ti−1, ti ]) ⊆ Uαi

Uαi−1

Uαi

γ(ti )

Lαi−1αi

I Define the fibre of LG over γ as

Lα1α2|γ(t1)
⊗ ... ⊗ Lαn−1αn|γ(tn−1)

⊗ Lαnα1|γ(tn)

Isomorphisms μαβγ  independence of n and of indices αi

Connection on Lαβ  independence of ti ∈ γ−1(Uαi ∩ Uαi+1)



Define connection νG on LG

I Consider path φ : γ // γ′ in LM

φ “short”  can assume t0, ..., tn and α1, ..., αn with

φ([0, 1] × [ti−1, ti ]) ⊆ Uαi

I Define parallel transport in LG by parallel transport in Lαiαi+1

along paths φti : γ(ti ) // γ′(ti ) in M, with correction by

integrals ∫

[0,1]×[ti−1,ti ]
φ∗Bαi

I Identity curv(Lαiαi+1) = Bαi+1 − Bαi implies well-definedness



Standard facts (Gawȩdzki, Brylinski, Murray, Carey, ...):

I Transgression G � // LG is a functor

Grb∇(M) // Bun∇(LM),

I curv(νG) =

∫

S1

ev∗H, for ev : S1 × LM // M

I c1(LG) =

∫

S1

ev∗DD(G), for DD(G) ∈ H3(M,Z)

Recent new facts:

I LG has a canonical fusion product

I Connection νG is superficial



Fusion product on LG:

I Definition: a fusion product on a line bundle

P over LM is an associative rule

Pγ1∪γ2 ⊗ Pγ2∪γ3
// Pγ1∪γ3 γ3

γ1

γ2

where γi ∪ γj ∈ LM is obtained by concatenation of γi with

the inverse of γj .

I Technically, a fusion product is a bundle isomorphism over the

3-fold fibre product of PM // M × M.

I For P = LG the fusion product exists since a point γ2(ti ) on

the middle path appears twice, and the contributions cancel:

Lαiαi+1|γ2(ti )
⊗ Lαi+1αi |γ2(ti )

μ
∼= Lαiαi |γ2(ti )

μ
∼= C



Superficiality of the connection νG on LG:

I Consider connection ν on a line bundle P over LM. It is

called superficial if:

1.) thin loops τ ∈ LLM have trivial holonomy: Holν(τ) = 1

(thin: τ : S1 × S1 // M has nowhere full rank)

2.) thin homotopic loops τ, τ ∈ LLM have the same

holonomy: Holν(τ) = Holν(τ ′)

I In order to see that νG on LG is superficial, one expresses the

holonomy of νG as the surface holonomy of the gerbe,

HolνG (τ) = HolG(τ)

and proves that surface holonomy has properties 1.) and 2.).



Summary:

I From every gerbe G over M one can construct a hermitian line

bundle LG over LM with a fusion product λG and a superficial

connection νG .

I Theorem [KW ’10]: This gives an equivalence of categories

Grb∇(M) ∼= FusBun∇sf(LM).

Wait – don’t we have to require that the bundles on the right hand

side are equivariant under loop rotation?



Fact: equivariance is a consequence of the superficial connection

I Rotation of a loop γ ∈ LM by an angle β ∈ [0, 2π] can be

regarded as a path in LM,

φβ : γ // rβ(γ)

I Get lift φ̃β : LGγ
// LGrβ(γ) by parallel transport of νG

I In order to make this an action of S1, we have to assure

φ̃2π = φ̃0 = id.

Proof: φ2π is a loop in LM and it is thin.

This argument generalizes to equivariance under Diff +(S1) and

under Rep+(S1).
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The basic gerbe Gbas over a compact simple simply-connected Lie

group G :

I Uniquely characterized by

1.) DD(Gbas) generates H3(G ,Z) ∼= Z

2.) Curvature H left-invariantly determined by 〈X , [Y , Z ]〉

I Concrete Lie-theoretical construction (Meinrenken ’02,

Gawȩdzki-Reis ’02)

– Uα conjugation-invariant, α = 0, ...., rk(g)

– Uα ∩ Uβ
∼= Oλα−λβ

⊆ g∗ is a coadjoint orbit,

for λα vertices of Weyl alcove

– Lαβ is the prequantum line bundle with Kostant

connection



Basic gerbe Gbas is multiplicative:

I Isomorphism

M : pr∗1Gbas ⊗ pr∗2Gbas
// m∗Gbas

over G × G , with m the product of G .

I Associativity condition over G × G × G

I Multiplicative structure determines a preimage of DD(G)

under the homomorphism

H4(BG ,Z) // H3(G ,Z)



Apply transgression (first step)

I Obtain Fréchet principal S1-bundle LGbas over LG

I Obtain smooth bundle isomorphism

LM : pr∗1LGbas ⊗ pr∗2LGbas
// Lm∗LGbas

over LG × LG , associative over LG × LG × LG

Equivalently: a Fréchet Lie group structure on LGbas making

1 // S1 // LGbas
// LG // 1

a central extension

I c1(LGbas) is the transgression of a generator of H3(G ,Z)

 this is the universal central extension of LG



Apply transgression (second step)

I Obtain connection νGbas
on LGbas

 induces splitting s of Lie algebra extension

 induces classifying 2-cocycle ω : Lg × Lg // R, namely

ω(X , Y ) =

∫

S1

〈
X , Y ′〉

I νGbas
is superficial

 canonical equivariance under Diff +(S1) and Rep+(S1)

I Remark: νGbas
is not the standard Pressley-Segal connection

νst := θLGbas − s(p∗θLG )

of left-invariant curvature ω. Instead, νGbas
= νst + β for a

1-form β ∈ Ω1(LG ), and
∫

S1

ev∗H = curv(νGbas
) = ω + dβ.



Apply transgression (third step)

I Obtain fusion product λGbas
on LGbas

I Transgression is a functor:

 fusion product is a group homomorphism

I Fusion product can be seen explicitly in the Mickelsson model

L̃G = {(η, z) | z ∈ C and η : D2 // G}/ ∼

with (η1, z1) ∼ (η2, z2) if η1|S1 = η2|S1 , z2 = z1e
2πiWZ(η1∪η2),

where WZ stands for the Wess-Zumino term.

Namely, for maps ηij : D2 // G with ηij |S1 = γi ∪ γj one has

λG((η12, z12) ⊗ (η23, z23)) = (η13, z12z23e
2πiWZ(η12∪η23∪η13)).



Summary: Multiplicative gerbes with connection over G provide

models for central extensions of LG with nice properties:

I canonical connections

I canonical equivariant structures

I canonical fusion product
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Motivation from physics:

Supersymmetric field theories suffer from a “global anomaly”

I 1-dimensions: anomaly represented by 2nd Stiefel-Whitney

class

w2 ∈ H2(M,Z2)

Cancellation: spin structure on M

I 2-dimensions: anomaly represented by

1

2
p1(M) ∈ H4(M,Z)

Cancellation: two approaches:

1.) Killingback ’87: spin structure on LM

2.) Stolz-Teichner ’04: string structure on M



Spin structures on loop spaces (Killingback ’87):

I M a spin manifold of dimension n

 frame bundle FM is a Spin(n)-principal bundle

 looped bundle LFM is a Fréchet LSpin(n)-principal bundle

I Definition: a spin structure on LM is a lift of the structure

group of LFM to the universal central extension

1 // S1 // ˜LSpin(n) // LSpin(n) // 1

i.e. a principal ˜LSpin(n)-bundle L̃FM over LM with an

equivariant map σ : L̃FM // LFM .



Obstruction against spin structures on loop spaces:

I Spin structures exists if and only if a certain class

λLM ∈ H3(LM,Z)

vanishes.

I Theorem [McLaughlin ’92]:

λLM =

∫

S1

ev∗
(

1

2
p1(M)

)

I Thus, we have

1

2
p1(M) = 0 +3 λLM = 0

but the converse is not true in general (Pilch-Warner ’88)

 we need enhanced notion of spin structures on loop spaces



General lifting theory provides a reformulation in terms of

principal S1-bundles and bundle isomorphisms:

I The equivariant map

σ : L̃FM // LFM

exhibits L̃FM as a principal S1-bundle S over LFM .

I The LSpin(n)-action on S can be encoded as an isomorphism

κ : S ⊗ ˜LSpin(n) // ρ∗S ,

of S1-bundles over LFM × LSpin(n), with ρ the principal

action of LSpin(n) on LFM .



Enhanced version of a spin structure:

I Definition: A fusion spin structure on LM is a spin structure

(S , κ) with a fusion product λ on the S1-bundle S over LFM

such that

κ : S ⊗ ˜LSpin(n) // ρ∗S

is fusion-preserving w.r.t. the fusion product λGbas
on

˜LSpin(n) = LGbas .

I Theorem [KW ’12]: Fusion spin structures exist if and only if

1

2
p1(M) = 0



Summary:

I The fusion product on the universal central extension

˜LSpin(n) allows to define fusion spin structures on loop spaces

I The existence of a fusion spin structure on LM is precisely the

condition for the cancellation of the global anomaly of

supersymmetric 2-dimensional field theories on M.



Further topics:

I Equivalence between fusion spin structures on LM and string

structures on M

Kottke-Melrose ’13: adding reparameterization invariance

KW ’14: adding thin structures

I Spin connections LM (Coquereaux-Pilch ’98)

KW’14: imposing a superficiality condition makes them

equivalent to string connections on M

I Anomaly cancellation mechanism: String connections M

trivialize a Pfaffian bundle of a family of Dirac operators

(Bunke ’11)
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